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1. (a) We rewrite 6x + 3y = 21 as 3y = −6x + 21 or y = −2x + 7.
Thus, the slope is −2.

(b) Solution 1

Since the slope of the line segment is 3, then
c− 0

5− 1
= 3, and so

c

4
= 3 or c = 12.

Solution 2
Since the slope of the line segment is 3, then for every unit that we move to the right, we
move 3 units up.
Since (5, c) is 4 units to the right of (1, 0), then it is 3(4) = 12 units up from (1, 0), so
c = 0 + 12 = 12.

(c) Solution 1

The given line segment joins (0, 4) to (8,−4), so has slope
4− (−4)

0− 8
=

8

−8
= −1.

Since the y-intercept of the line segment is 4, then the equation of the line passing through
A and B is y = −x + 4.
Since the point (k, k) lies on the line, then k = −k + 4 or 2k = 4 and so k = 2.

Solution 2
We label the point (k, k) as K.
Since K lies on the line segment AB, then the slope of AK equals the slope of AB.

Line segment AB joins (0, 4) to (8,−4), so has slope
4− (−4)

0− 8
=

8

−8
= −1.

Line segment AK joins (0, 4) to (k, k), so has slope
k − 4

k − 0
.

Therefore,
k − 4

k
= −1 or k − 4 = −k or 2k = 4 and so k = 2.

2. (a) Solution 1

If a quadratic equation has the form ax2 + bx + c = 0, then the sum of its roots is − b

a
.

Here, the sum of the roots must be −
(

(−6)
1

)
= 6.

Solution 2
Since x2 − 6x− 7 = 0, then (x− 7)(x + 1) = 0.
Thus, the roots are x = 7 and x = −1.
The sum of these roots is 7 + (−1) = 6.

(b) Solution 1

If a quadratic equation has the form ax2 + bx + c = 0, then the product of its roots is
c

a
.

Here, the product of the roots must be −20
5

= −4.

Solution 2
Since 5x2 − 20 = 0, then x2 − 4 = 0 or (x− 2)(x + 2) = 0.
Thus, the roots are x = 2 and x = −2.
The product of these roots is 2(−2) = −4.

(c) Solution 1

If a cubic equation has the form a3 + bx2 + cx + d = 0, then the sum of its roots is − b

a
.

Here, the sum of the three roots is −
(−6

1

)
= 6.

The average of three numbers is their sum divided by 3, so the average of the three roots
is 6

3
= 2.
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Solution 2
Since x3 − 6x2 + 5x = 0, then x(x2 − 6x + 5) = 0 or x(x− 5)(x− 1) = 0.
The three roots of this equation are x = 0, x = 1 and x = 5.
The average of these numbers is 1

3
(0 + 1 + 5) = 1

3
(6) = 2.

3. (a) Since AB = AD = BD, then 4BDA is equilateral.
Thus, ∠ABD = ∠ADB = ∠DAB = 60◦.
Also, ∠DAE = 180◦ − ∠ADE − ∠AED = 180◦ − 60◦ − 90◦ = 30◦.
Since CAE is a straight line, then ∠CAD = 180◦ − ∠DAE = 180◦ − 30◦ = 150◦.
Now AC = AD so 4CAD is isosceles, which gives ∠CDA = ∠DCA.
Since the sum of the angles in 4CAD is 180◦ and ∠CDA = ∠DCA, then

∠CDA = 1
2
(180◦ − ∠CAD) = 1

2
(180◦ − 150◦) = 15◦

Thus, ∠CDB = ∠CDA + ∠ADB = 15◦ + 60◦ = 75◦.

(b) Solution 1
Since ABCD is a rectangle, then AB = CD = 40 and AD = BC = 30.
By the Pythagorean Theorem, BD2 = AD2 + AB2 and since BD > 0, then

BD =
√

302 + 402 =
√

900 + 1600 =
√

2500 = 50

We calculate the area of 4ADB is two different ways.
First, using AB as base and AD as height, we obtain an area of 1

2
(40)(30) = 600.

Next, using DB as base and AF as height, we obtain an area of 1
2
(50)x = 25x.

We must have 25x = 600 and so x = 600
25

= 24.

Solution 2
Since ABCD is a rectangle, then AB = CD = 40 and AD = BC = 30.
By the Pythagorean Theorem, BD2 = AD2 + AB2 and since BD > 0, then

BD =
√

302 + 402 =
√

900 + 1600 =
√

2500 = 50

Since 4DAB is right-angled at A, then sin(∠ADB) =
AB

BD
=

40

50
=

4

5
.

But 4ADF is right-angled at F and ∠ADF = ∠ADB.

Therefore, sin(∠ADF ) =
AF

AD
=

x

30
.

Thus,
x

30
=

4

5
and so x = 4

5
(30) = 24.

Solution 3
Since ABCD is a rectangle, then AB = CD = 40 and AD = BC = 30.
By the Pythagorean Theorem, BD2 = AD2 + AB2 and since BD > 0, then

BD =
√

302 + 402 =
√

900 + 1600 =
√

2500 = 50

Note that 4BFA is similar to 4BAD, since each is right-angled and they share a com-
mon angle at B.

Thus,
AF

AB
=

AD

BD
and so

x

30
=

40

50
which gives x =

30(40)

50
= 24.
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4. (a) Solution 1
The sum of the terms in an arithmetic sequence is equal to the average of the first and
last terms times the number of terms.
If n is the number of terms in the sequence, then 1

2
(1 + 19)n = 70 or 10n = 70 and so

n = 7.

Solution 2
Let n be the number of terms in the sequence and d the common difference.
Since the first term is 1 and the nth term equals 19, then 1 + (n − 1)d = 19 and so
(n− 1)d = 18.
Since the sum of the terms in the sequence is 70, then 1

2
n(1 + 1 + (n− 1)d) = 70.

Thus, 1
2
n(2 + 18) = 70 or 10n = 70 and so n = 7.

(b) Solution 1
Since the given equation is true for all values of x, then it is true for any particular value
of x that we try.
If x = −3, the equation becomes a(−3 + b(0)) = 2(3) or −3a = 6 and so a = −2.
If x = 0, the equation becomes −2(0 + b(3)) = 2(6) or −6b = 12 and so b = −2.
Therefore, a = −2 and b = −2.

Solution 2
We expand both sides of the equation:

a(x + b(x + 3)) = 2(x + 6)

a(x + bx + 3b) = 2x + 12

ax + abx + 3ab = 2x + 12

(a + ab)x + 3ab = 2x + 12

Since this equation is true for all values of x, then the coefficients on the left side and right
side must be equal, so a + ab = 2 and 3ab = 12.
From the second equation, ab = 4 so the first equation becomes a + 4 = 2 or a = −2.
Since ab = 4, then −2b = 4 and so b = −2.
Thus, a = b = −2.

5. (a) Solution 1
Drop a perpendicular from C to P on AD.

A B
D

C

3
77

P

Since 4ACB is isosceles, then AP = PB.
Since 4CDP is a 30◦-60◦-90◦ triangle, then PD = 1

2
(CD) = 3

2
.

Thus, AP = AD − PD = 8− 3
2

= 13
2
.

This tells us that DB = PB − PD = AP − PD = 13
2
− 3

2
= 5.

Solution 2
Since 4ACB is symmetric about the vertical line through C, we can reflect CD in this
vertical line, finding point E on AD with CE = 3 and ∠CED = 60◦.
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A B
D

C

3
77

6060

3

E

Then 4CDE has two 60◦ angles, so must have a third, and so is equilateral.
Therefore, ED = CD = CE = 3 and so DB = AE = AD − ED = 8− 3 = 5.

Solution 3
Since ∠CDB = 180◦−∠CDA = 180◦− 60◦ = 120◦, then using the cosine law in 4CDB,
we obtain

CB2 = CD2 + DB2 − 2(CD)(DB) cos(∠CDB)

72 = 32 + DB2 − 2(3)(DB) cos(120◦)

49 = 9 + DB2 − 6(DB)
(
−1

2

)
0 = DB2 + 3DB − 40

0 = (DB − 5)(DB + 8)

Since DB > 0, then DB = 5.

(b) Solution 1
Since 4ABC is right-angled at C, then sin B = cos A.

Therefore, 2 cos A = 3 tan A =
3 sin A

cos A
or 2 cos2 A = 3 sin A.

Using the fact that cos2 A = 1− sin2 A, this becomes 2− 2 sin2 A = 3 sin A
or 2 sin2 A + 3 sin A− 2 = 0 or (2 sin A− 1)(sin A + 2) = 0.
Since sin A is between −1 and 1, then sin A = 1

2
.

Since A is an acute angle, then A = 30◦.

Solution 2

Since 4ABC is right-angled at C, then sin B =
b

c
and tan A =

a

b
.

Thus, the given equation is
2b

c
=

3a

b
or 2b2 = 3ac.

Using the Pythagorean Theorem, b2 = c2 − a2 and so we obtain 2c2 − 2a2 = 3ac or
2c2 − 3ac− 2a2 = 0.
Factoring, we obtain (c− 2a)(2c + a) = 0.
Since a and c must both be positive, then c = 2a.
Since 4ABC is right-angled, the relation c = 2a means that 4ABC is a 30◦-60◦-90◦

triangle, with A = 30◦.

6. (a) The number of integers between 100 and 999 inclusive is 999− 100 + 1 = 900.
An integer n in this range has three digits, say a, b and c, with the hundreds digit equal
to a.
Note that 0 ≤ b ≤ 9 and 0 ≤ c ≤ 9 and 1 ≤ a ≤ 9.
To have a + b + c = 24, then the possible triples for a, b, c in some order are 9,9,6; 9,8,7;
8,8,8. (There cannot be three 9’s. If there are two 9’s, the the other digit equals 6. If there
is one 9, the second and third digits add to 15 but are both less than 9, so must equal 8
and 7. If there are zero 9’s, the maximum for each digit is 8, and so each digt must be 8
in order for the sum of all three to equal 24.)
If the digits are 9, 9 and 6, there are 3 arrangements: 996, 969, 699.
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If the digits are 9, 8 and 7, there are 6 arrangements: 987, 978, 897, 879, 798, 789.
If the digits are 8, 8 and 8, there is only 1 arrangement: 888.
Therefore, there are 3 + 6 + 1 = 10 integers n in the range 100 to 999 with the sum of the
digits of n equal to 24.
The required probability equals the number of possible values of n with the sum of digits
equal to 24 divided by the total number of integers in the range, or 10

900
= 1

90
.

(b) Since Alice drives at 60 km/h, then she drives 1 km every minute.
Since Alice drove from G to F in 45 minutes, then the distance from G to F is 45 km.
Let the distance from E to G be d km and let Bob’s speed be B km/h.

Since Bob drove from G to E in 20 minutes (or 1
3

of an hour), then
d

B
=

1

3
. Thus, d = 1

3
B.

The time that it took Bob to drive from F to G was 45
B

hours.
The time that it took Alice to drive from E to G was d

60
hours.

Since the time that it took each of Alice and Bob to reach G was the same, then
d

60
=

45

B
and so Bd = 45(60) = 2700.
Thus, B

(
1
3
B

)
= 2700 so B2 = 8100 or B = 90 since B > 0.

Therefore, Bob’s speed was 90 km/h.

7. (a) Completing the square on the original parabola, we obtain

y = x2 − 2x + 4 = x2 − 2x + 1− 1 + 4 = (x− 1)2 + 3

Therefore, the vertex of the original parabola is (1, 3).
Since the new parabola is a translation of the original parabola and has x-intercepts 3 and
5, then its equation is y = 1(x− 3)(x− 5) = x2 − 8x + 15.
Completing the square here, we obtain

y = x2 − 8x + 15 = x2 − 8x + 16− 16 + 15 = (x− 4)2 − 1

Therefore, the vertex of the new parabola is (4,−1).
Thus, the point (1, 3) is translated p units to the right and q units down to reach (4,−1),
so p = 3 and q = 4.

(b) First, we determine the coordinates of A.
The area of 4ABC is 4. We can think of AC as its base, and its height being the distance
from B to the x-axis.
If the coordinates of A are (a, 0), then the base has length 4− a and the height is 4.
Thus, 1

2
(4− a)(4) = 4, so 4− a = 2 and so a = 2.

Therefore, the coordinates of A are (2, 0).

Next, we determine the equation of the parabola.
The parabola has x-intercepts 2 and 4, so has equation y = k(x− 2)(x− 4).
Since the parabola passes through (0,−4) as well, then −4 = k(−2)(−4) so k = −1

2
.

Therefore, the parabola has equation y = −1
2
(x− 2)(x− 4).

Next, we determine the coordinates of D, the vertex of the parabola.
Since the x-intercepts are 2 and 4, then the x-coordinate of the vertex is the average of
these, or 3.
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The y-coordinate of D can be obtained from the equation of the parabola; we obtain
y = −1

2
(3− 2)(3− 4) = −1

2
(1)(−1) = 1

2
.

Thus, the coordinates of D are (3, 1
2
).

Lastly, we determine the area of 4BDC, whose vertices have coordinates B(0,−4),
D(3, 1

2
), and C(4, 0).

Method 1
We proceed be “completing the rectangle”. That is, we draw the rectangle with horizontal
sides along the lines y = 1

2
and y = −4 and vertical sides along the lines x = 0 and x = 4.

We label this rectangle as BPQR.

C

D

B

P Q

R

The area of 4BDC equals the area of the rectangle minus the areas of 4BPD, 4DQC
and 4CRB.
Rectangle BPQR has height 4 + 1

2
= 9

2
and width 4.

4BPD has height 9
2

and base 3.

4DQC has height 1
2

and base 1.

4CRB has height 4 and base 4.

Therefore, the area of 4BDC is 4(9
2
)− 1

2
(9

2
)(3)− 1

2
(1

2
)(1)− 1

2
(4)(4) = 18− 27

4
− 1

4
− 8 = 3.

Method 2
We determine the coordinates of E, the point where BD crosses the x-axis.

C

D

B

E

Once we have done this, then the area of 4BDC equals the sum of the areas of 4ECB
and 4ECD.
Since B has coordinates (0,−4) and D has coordinates (3, 1

2
), then the slope of BD is

1
2
− (−4)

3− 0
=

9
2

3
=

3

2
.

Since B is on the y-axis, then the equation of the line through B and D is y = 3
2
x− 4.

To find the x-coordinate of E, we set y = 0 to obtain 0 = 3
2
x− 4 or 3

2
x = 4 or x = 8

3
.

We think of EC as the base of each of the two smaller triangles. Note that EC = 4− 8
3

= 4
3
.

Thus, the area of 4ECD is 1
2
(4

3
)(1

2
) = 1

3
.

Also, the area of 4ECB is 1
2
(4

3
)(4) = 8

3
.

Therefore, the area of 4BDC is 1
3

+ 8
3

= 3.
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8. (a) Since PQ is parallel to AB, then it is parallel to DC and is perpendicular to BC.
Drop perpendiculars from A to E on PQ and from P to F on DC.

A B

CD

P QE

F
Then ABQE and PQCF are rectangles. Thus, EQ = x, which means that PE = r − x
and FC = r, which means that DF = y − r.
Let BQ = b and QC = c. Thus, AE = b and PF = c.
The area of trapezoid ABQP is 1

2
(x + r)b.

The area of trapezoid PQCD is 1
2
(r + y)c.

Since these areas are equal, then 1
2
(x + r)b = 1

2
(r + y)c, which gives

x + r

r + y
=

c

b
.

Since AE is parallel to PF , then ∠PAE = ∠DPF and 4AEP is similar to 4PFD.

Thus,
AE

PE
=

PF

DF
which gives

b

r − x
=

c

y − r
or

c

b
=

y − r

r − x
.

Combining
x + r

r + y
=

c

b
and

c

b
=

y − r

r − x
gives

x + r

r + y
=

y − r

r − x
or (x+r)(r−x) = (r+y)(y−r).

From this, we get r2 − x2 = y2 − r2 or 2r2 = x2 + y2, as required.

(b) Join O to A, B and C.

O

BA

D

C

Since AB is tangent to the circle at A, then ∠OAB = 90◦.
By the Pythagorean Theorem in 4OAB, we get OA2 + AB2 = OB2 or r2 + p2 = OB2.
In 4ODC, we have OD = DC = q and OC = r.
By the cosine law,

OC2 = OD2 + DC2 − 2(OD)(DC) cos(∠ODC)

r2 = q2 + q2 − 2q2 cos(∠ODC)

cos(∠ODC) =
2q2 − r2

2q2

In 4ODB, we have ∠ODB = ∠ODC.
Thus, using the cosine law again,

OB2 = OD2 + DB2 − 2(OD)(DB) cos(∠ODB)

= q2 + (2q)2 − 2(q)(2q)

(
2q2 − r2

2q2

)
= q2 + 4q2 − 2(2q2 − r2)

= q2 + 2r2

So OB2 = r2 + p2 = q2 + 2r2, which gives p2 = q2 + r2, as required.
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9. (a) First, we convert each of the logarithms to a logarithm with base 2:

1 + log4 x = 1 +
log2 x

log2 4
= 1 +

log2 x

2
= 1 + 1

2
log2 x

log8 4x =
log2 4x

log2 8
=

log2 4 + log2 x

3
= 2

3
+ 1

3
log2 x

Let y = log2 x. Then the three terms are y, 1 + 1
2
y, and 2

3
+ 1

3
y. Since these three are in

geometric sequence, then

y

1 + 1
2
y

=
1 + 1

2
y

2
3

+ 1
3
y

y(2
3

+ 1
3
y) = (1 + 1

2
y)2

2
3
y + 1

3
y2 = 1 + y + 1

4
y2

8y + 4y2 = 12 + 12y + 3y2

y2 − 4y − 12 = 0

(y − 6)(y + 2) = 0

Therefore, y = log2 x = 6 or y = log2 x = −2, which gives x = 26 = 64 or x = 2−2 = 1
4
.

(b) Solution 1
Rotate a copy of 4PSU by 90◦ counterclockwise around P , forming a new triangle PQV .
Note that V lies on the extension of RQ.

P

R

Q

S

T

U

V

Then PV = PU by rotation.
Also, ∠V PT = ∠V PQ + ∠QPT = ∠UPS + ∠QPT = 90◦ − ∠UPT = 90◦ − 45◦.
This tells us that 4PTU is congruent to 4PTV , by “side-angle-side”.
Thus, the perimeter of 4RUT equals

UR + RT + UT = UR + RT + TV

= UR + RT + TQ + QV

= UR + RQ + SU

= SU + UR + RQ

= SR + RQ

= 8

That is, the perimeter of 4RUT always equals 8, so the maximum possible perimeter is 8.
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Solution 2
Let ∠SPU = θ. Note that 0◦ ≤ θ ≤ 45◦.

Then tan θ =
SU

PS
, so SU = 4 tan θ.

Since SR = 4, then UR = SR− SU = 4− 4 tan θ.
Since ∠UPT = 45◦, then ∠QPT = 90◦ − 45◦ − θ = 45◦ − θ.

Thus, tan(45◦ − θ) =
QT

PQ
and so QT = 4 tan(45◦ − θ).

Since QR = 4, then RT = 4− 4 tan(45◦ − θ).

But tan(A − B) =
tan A− tan B

1 + tan A tan B
, so tan(45◦ − θ) =

tan(45◦)− tan θ

1 + tan (45◦) tan θ
=

1− tan θ

1 + tan θ
,

since tan(45◦) = 1.

This gives RT = 4− 4

(
1− tan θ

1 + tan θ

)
=

4 + 4 tan θ

1 + tan θ
− 4− 4 tan θ

1 + tan θ
=

8 tan θ

1 + tan θ
.

By the Pythagorean Theorem in 4URT , we obtain

UT =
√

UR2 + RT 2

=

√
(4− 4 tan θ)2 +

(
8 tan θ

1 + tan θ

)2

= 4

√
(1− tan θ)2 +

(
2 tan θ

1 + tan θ

)2

= 4

√(
1− tan2 θ

1 + tan θ

)2

+

(
2 tan θ

1 + tan θ

)2

= 4

√
1− 2 tan2 θ + tan4 θ + 4 tan2 θ

(1 + tan θ)2

= 4

√
1 + 2 tan2 θ + tan4 θ

(1 + tan θ)2

= 4

√
(1 + tan2 θ)2

(1 + tan θ)2

= 4

(
1 + tan2 θ

1 + tan θ

)
Therefore, the perimeter of 4URT is

UR + RT + UT = 4− 4 tan θ +
8 tan θ

1 + tan θ
+ 4

(
1 + tan2 θ

1 + tan θ

)
= 4

(
1− tan2 θ

1 + tan θ
+

2 tan θ

1 + tan θ
+

1 + tan2 θ

1 + tan θ

)
= 4

(
2 + 2 tan θ

1 + tan θ

)
= 8

Thus, the perimeter is always 8, regardless of the value of θ, so the maximum possible
perimeter is 8.
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10. Throughout this problem, we represent the states of the n plates as a string of 0’s and 1’s (called
a binary string) of length n of the form p1p2 · · · pn, with the rth digit from the left (namely pr)
equal to 1 if plate r contains a gift and equal to 0 if plate r does not. We call a binary string
of length n allowable if it satisfies the requirements – that is, if no two adjacent digits both
equal 1. Note that digit pn is also “adjacent” to digit p1, so we cannot have p1 = pn = 1.

(a) Suppose that p1 = 1.
Then p2 = p7 = 0, so the string is of the form 10p3p4p5p60.
Since k = 3, then 2 of p3, p4, p5, p6 equal 1, but in such a way that no two adjacent digits
are both 1.
The possible strings in this case are 1010100, 1010010 and 1001010.

Suppose that p1 = 0. Then p2 can equal 1 or 0.
If p2 = 1, then p3 = 0 as well. This means that the string is of the form 010p4p5p6p7,
which is the same as the general string in the first case, but shifted by 1 position around
the circle, so there are again 3 possibilities.
If p2 = 0, then the string is of the form 00p3p4p5p6p7 and 3 of the digits p3, p4, p5, p6, p7

equal 1 in such a way that no 2 adjacent digits equal 1.
There is only 1 way in which this can happen: 0010101.
Overall, this gives 7 possible configurations, so f(7, 3) = 7.

(b) Solution 1
An allowable string p1p2 · · · pn−1pn has (p1, pn) = (1, 0), (0, 1), or (0, 0).
Define g(n, k, 1, 0) to be the number of allowable strings of length n, containing k 1’s, and
with (p1, pn) = (1, 0).
We define g(n, k, 0, 1) and g(n, k, 0, 0) in a similar manner.
Note that f(n, k) = g(n, k, 1, 0) + g(n, k, 0, 1) + g(n, k, 0, 0).

Consider the strings counted by g(n, k, 0, 1).
Since pn = 1, then pn−1 = 0. Since p1 = 0, then p2 can equal 0 or 1.
We remove the first and last digits of these strings.
We obtain strings p2p3 · · · pn−2pn−1 that is strings of length n− 2 containing k − 1 1’s.
Since pn−1 = 0, then the first and last digits of these strings are not both 1. Also, since
the original strings did not contain two consecutive 1’s, then these new strings does not
either.
Therefore, p2p3 · · · pn−2pn−1 are allowable strings of length n− 2 containing k− 1 1’s, with
pn−1 = 0 and p2 = 1 or p2 = 0.
The number of such strings with p2 = 1 and pn−1 = 0 is g(n−2, k−1, 1, 0) and the number
of such strings with p2 = 0 and pn−1 = 0 is g(n− 2, k − 1, 0, 0).
Thus, g(n, k, 0, 1) = g(n− 2, k − 1, 1, 0) + g(n− 2, k − 1, 0, 0).

Consider the strings counted by g(n, k, 0, 0).
Since p1 = 0 and pn = 0, then we can remove pn to obtain strings p1p2 · · · pn−1 of length
n − 1 containing k 1’s. These strings are allowable since p1 = 0 and the original strings
were allowable.
Note that we have p1 = 0 and pn−1 is either 0 or 1.
So the strings p1p2 · · · pn−1 are allowable strings of length n− 1 containing k 1’s, starting
with 0, and ending with 0 or 1.
The number of such strings with p1 = 0 and pn−1 = 0 is g(n − 1, k, 0, 0) and the number
of such strings with p1 = 0 and pn−1 = 1 is g(n− 1, k, 0, 1).
Thus, g(n, k, 0, 0) = g(n− 1, k, 0, 0) + g(n− 1, k, 0, 1).
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Consider the strings counted by g(n, k, 1, 0).
Here, p1 = 1 and pn = 0. Thus, pn−1 can equal 0 or 1. We consider these two sets sepa-
rately.
If pn−1 = 0, then the string p1p2 · · · pn−1 is an allowable string of length n− 1, containing
k 1’s, beginning with 1 and ending with 0.
Therefore, the number of strings counted by g(n, k, 1, 0) with pn−1 = 0 is equal to
g(n− 1, k, 1, 0).
If pn−1 = 1, then the string p2p3 · · · pn−1 is of length n− 2, begins with 0 and ends with 1.
Also, it contains k − 1 1’s (having removed the original leading 1) and is allowable since
the original string was.
Therefore, the number of strings counted by g(n, k, 1, 0) with pn−1 = 1 is equal to
g(n− 2, k − 1, 0, 1).

Therefore,

f(n, k) = g(n, k, 1, 0) + g(n, k, 0, 1) + g(n, k, 0, 0)

= (g(n− 1, k, 1, 0) + g(n− 2, k − 1, 0, 1))

+(g(n− 2, k − 1, 1, 0) + g(n− 2, k − 1, 0, 0))

+(g(n− 1, k, 0, 0) + g(n− 1, k, 0, 1))

= (g(n− 1, k, 1, 0) + g(n− 1, k, 0, 1) + g(n− 1, k, 0, 0))

+(g(n− 2, k − 1, 0, 1) + g(n− 2, k − 1, 1, 0) + g(n− 2, k − 1, 0, 0))

= f(n− 1, k) + f(n− 2, k − 1)

as required.

Solution 2
We develop an explicit formula for f(n, k) by building these strings.
Consider the allowable strings of length n that include k 1’s. Either pn = 0 or pn = 1.

Consider first the case when pn = 0. (Here, p1 can equal 0 or 1.)
These strings are all of the form p1p2p3 · · · pn−10.
In this case, since a 1 is always followed by a 0 and the strings end with 0, we can build
these strings using blocks of the form 10 and 0. Any combination of these blocks will be
an allowable string, as each 1 will always be both preceded and followed by a 0.
Thus, these strings can all be built using k 10 blocks and n − 2k 0 blocks. This gives k
1’s and k + (n − 2k) = n − k 0’s. Note that any string built with these blocks will be
allowable and will end with a 0, and any such allowable string can be built in this way.
The number of ways of arranging k blocks of one kind and n− 2k blocks of another kind

is

(
k + (n− 2k)

k

)
, which simplifies to

(
n− k

k

)
.

Consider next the case when pn = 1.
Here, we must have pn−1 = p1 = 0, since these are the two digits adjacent to pn.
Thus, these strings are all of the form 0p2p3 · · · 01.
Consider the strings formed by removing the first and last digits.
These strings are allowable, are of length n − 2, include k − 1 1’s, end with 0, and can
begin with 0 or 1.
Again, since a 1 is always followed by a 0 and the strings end with 0, we can build these
strings using blocks of the form 10 and 0. Any combination of these blocks will be an
allowable string, as each 1 will always be both preceded and followed by a 0.

Translating our method of counting from the first case, there are

(
(n− 2)− (k − 1)

k − 1

)
or
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n− k − 1

k − 1

)
such strings.

Thus, f(n, k) =

(
n− k

k

)
+

(
n− k − 1

k − 1

)
such strings.

To prove the desired fact, we will use the fact that

(
m

r

)
=

(
m− 1

r

)
+

(
m− 1

r − 1

)
, which

we prove at the end.
Now

f(n− 1, k) + f(n− 2, k − 1)

=

(
(n− 1)− k

k

)
+

(
(n− 1)− k − 1

k − 1

)
+

(
(n− 2)− (k − 1)

k − 1

)
+

(
(n− 2)− (k − 1)− 1

(k − 1)− 1

)
=

(
n− k − 1

k

)
+

(
n− k − 2

k − 1

)
+

(
n− k − 1

k − 1

)
+

(
n− k − 2

k − 2

)
=

(
n− k − 1

k

)
+

(
n− k − 1

k − 1

)
+

(
n− k − 2

k − 1

)
+

(
n− k − 2

k − 2

)
=

(
n− k

k

)
+

(
n− k − 1

k − 1

)
(using the identity above)

= f(n, k)

as required.

To prove the identity, we expand the terms on the right side:(
m− 1

r

)
+

(
m− 1

r − 1

)
=

(m− 1)!

r!(m− r − 1)!
+

(m− 1)!

(r − 1)!(m− r)!

=
(m− 1)!(m− r)

r!(m− r − 1)!(m− r)
+

r(m− 1)!

r(r − 1)!(m− r)!

=
(m− 1)!(m− r)

r!(m− r)!
+

r(m− 1)!

r!(m− r)!

=
(m− 1)!(m− r + r)

r!(m− r)!

=
(m− 1)!m

r!(m− r)!

=
m!

r!(m− r)!

=

(
m

r

)
as required.
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(c) We use the formula for f(n, k) developed in Solution 2 to (b). In order to look at divisi-
bility, we need to first simplify the formula:

f(n, k) =

(
n− k

k

)
+

(
n− k − 1

k − 1

)
=

(n− k)!

k!(n− k − k)!
+

(n− k − 1)!

(k − 1)!((n− k − 1)− (k − 1))!

=
(n− k)!

k!(n− 2k)!
+

(n− k − 1)!

(k − 1)!(n− 2k)!

=
(n− k − 1)!(n− k)

k!(n− 2k)!
+

(n− k − 1)!k

k!(n− 2k)!

=
(n− k − 1)!(n− k + k)

k!(n− 2k)!

=
n(n− k − 1)!

k!(n− 2k)!

=
n(n− k − 1)(n− k − 2) · · · (n− 2k + 2)(n− 2k + 1)

k!

Now that we have written f(n, k) as a product, it is significantly easier to look at divisi-
bility.
Note that 2009 = 41 × 49 = 72 × 41, so we need f(n, k) to be divisible by 41 and by 7
twice. For this to be the case, the numerator of f(n, k) must have at least one more factor
of 41 and at least two more factors of 7 than the denominator.
Also, we want to minimize n + k, so we work to keep n and k as small as possible.
If n = 49 and k = 5, then

f(49, 5) =
49(43)(42)(41)(40)

5!
=

49(43)(42)(41)(40)

5(4)(3)(2)(1)
= 49(43)(14)(41)

which is divisible by 2009.
We show that this pair minimizes the value of n + k with a value of 54.

We consider the possible cases by looking separately at the factors of 41 and 7 that must
occur. We focus on the factor of 41 first.
For the numerator to contain a factor of 41, either n is divisible by 41 or one of the terms
in the product (n− k − 1)(n− k − 2) · · · (n− 2k + 1) is divisible by 41.

Case 1: n is divisible by 41
We already know that n = 82 is too large, so we consider n = 41. From the original
interpretation of f(n, k), we see that k ≤ 20, as there can be no more than 20 gifts placed
on 41 plates.
Here, the numerator becomes 41 times the product of k−1 consecutive integers, the largest
of which is 40− k.
Now the numerator must also contain at least two factors of 7 more than the denominator.
But the denominator is the product of k consecutive integers. Since the numerator con-
tains the product of k− 1 consecutive integers and the denominator contains the product
of k consecutive integers, then the denominator will always include at least as many mul-
tiples of 7 as the numerator (since there are more consecutive integers in the product
in the denominator). Thus, it is impossible for the numerator to contain even one more
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additional factor of 7 than the denominator.
Therefore, if n = 41, then f(n, k) cannot be divisible by 2009.

Case 2: n is not divisible by 41
This means that the factor of 41 in the numerator must occur in the product

(n− k − 1)(n− k − 2) · · · (n− 2k + 1)

In this case, the integer 41 must occur in this product, since an occurrence of 82 would
make n greater than 82, which does not minimize n + k.
So we try to find values of n and k that include the integer 41 in this list.
Note that n− k − 1 is the largest factor in the product and n− 2k + 1 is the smallest.
Since 41 is contained somewhere in the product, then n−2k+1 ≤ 41 (giving n ≤ 40+2k)
and 41 ≤ n− k − 1 (giving n ≥ 42 + k).
Combining these restrictions, we get 42 + k ≤ n ≤ 40 + 2k.

Now, we focus on the factors of 7.
Either n is not divisible by 7 or n is divisible by 7.

∗ If n is not divisible by 7, then at least two factors of 7 must be included in the product

(n− k − 1)(n− k − 2) · · · (n− 2k + 1)

which means that either k ≥ 8 (to give two multiples of 7 in this list of k−1 consecutive
integers) or one of the factors is divisible by 49.

· If k ≥ 8, then n ≥ 42 + k ≥ 50 so n + k ≥ 58, which is not minimal.

· If one of the factors is a multiple of 49, then 49 must be included in the list so
n− 2k + 1 ≤ 49 (giving n ≤ 48 + 2k) and 49 ≤ n− k − 1 (giving n ≥ 50 + k).
In this case, we already know that 42 + k ≤ n ≤ 40 + 2k and now we also have
50 + k ≤ n ≤ 48 + 2k.
For these ranges to overlap, we need 50+k ≤ 40+2k and so k ≥ 10, which means
that n ≥ 50 + k ≥ 60, and so n + k ≥ 70, which is not minimal.

∗ Next, we consider the case where n is a multiple of 7.
Here, 42 + k ≤ n ≤ 40 + 2k (to include 41 in the product) and n is a multiple of 7.
Since k is at least 2 by definition, then n ≥ 42 + k ≥ 44, so n is at least 49.
If n was 56 or more, we do not get a minimal value for n + k.
Thus, we need to have n = 49. In this case, we do not need to look for another factor
of 7 in the list.
To complete this case, we need to find the smallest value of k for which 49 is in the
range from 42 + k to 40 + 2k because we need to have 42 + k ≤ n ≤ 40 + 2k.
This value of k is k = 5, which gives n + k = 49 + 5 = 54.

Since f(49, 5) is divisible by 2009, as determined above, then this is the case that minimizes
n + k, giving a value of 54.


