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1. (a) Solution 1
Since 3x = 27, then 3x+2 = 3x32 = 27 · 9 = 243.

Solution 2
Since 3x = 27 and 27 = 33, then x = 3.
Therefore, 3x+2 = 35 = 243.

(b) Since 2531359x = 2731459, then x =
2731459

2531359
= 2231 = 12.

(c) The lines y = x+ 2 and y = −1
2
x+ 2 both pass through the point B on the y-axis.

Since the y-intercept of the line y = x+ 2 is 2, then B has coordinates (0, 2).
Next, we find the x-intercepts of each of the two lines by setting y = 0.
If y = x+ 2 and y = 0, then x+ 2 = 0 or x = −2, so A has coordinates (−2, 0).
If y = −1

2
x+ 2 and y = 0, then 0 = −1

2
x+ 2 or 1

2
x = 2, and so x = 4.

Thus, C has coordinates (4, 0).
Since BO and AC are perpendicular, then we can treat AC as the base of 4ABC and
BO as its height.
Note that BO = 2 and AC = 4− (−2) = 6.
Therefore, the area of 4ABC is 1

2
× AC ×BO = 1

2
× 6× 2 = 6.

2. (a) Let r, g and b be the masses of the red, green and blue packages, respectively.
We are told that r + g + b = 60, r + g = 25, and g + b = 50.
Subtracting the second equation from the first, we obtain b = 60− 25 = 35.
Substituting into the third equation, we obtain g = 50− b = 50− 35 = 15.
Therefore, the mass of the green package is 15 kg.

(b) Suppose that a palindrome p is the sum of the three consecutive integers a− 1, a, a+ 1.
In this case, p = (a− 1) + a+ (a+ 1) = 3a, so p is a multiple of 3.
The largest palindromes less than 200 are 191, 181, 171.
Note that 191 and 181 are not divisible by 3, but 171 is divisible by 3.
One way to check these without using a calculator is to use the test for divisibility by 3:

A positive integer is divisible by 3 if and only if the sum of its digits is divisible
by 3.

Therefore, 191 and 181 cannot be the sum of three consecutive integers.
The integer 171 can be written as 56 + 57 + 58, so 171 is the largest palindrome less than
200 that is the sum of three consecutive integers.

(c) Solution 1
Since (x+ 1)(x− 1) = 8, then x2 − 1 = 8 or x2 = 9.
Thus, (x2 + x)(x2 − x) = x(x+ 1)x(x− 1) = x2(x+ 1)(x− 1) = 9(8) = 72.

Solution 2
Since (x+ 1)(x− 1) = 8, then x2 − 1 = 8 or x2 = 9, so x = ±3.
If x = 3, then (x2 + x)(x2 − x) = (32 + 3)(32 − 3) = (9 + 3)(9− 3) = 12(6) = 72.
If x = −3, then (x2 + x)(x2 − x) = ((−3)2 + (−3))((−3)2 − (−3)) = (9− 3)(9 + 3) = 72.
In either case, (x2 + x)(x2 − x) = 72.

3. (a) Solution 1
Bea spends 60 minutes flying from H to F , 30 minutes at F , 45 minutes flying from F to
G, 60 minutes at G, and then flies from G to H.
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Thus, her total time is 60 + 30 + 45 + 60 = 195 minutes plus the length of time that it
takes her to fly from G to H.
Since Bea flies at a constant speed, then the ratio of the two distances equals the ratio of
the corresponding times.

Therefore,
HF

GF
=

60 minutes

45 minutes
=

4

3
.

Since 4FGH is right-angled at F , then 4FGH must be similar to a 3-4-5 triangle, and

so
HG

GF
=

5

3
.

In particular, this means that the ratio of the times flying H to G and F to G is also 5
3
.

Thus, it takes her 5
3
× 45 = 75 minutes to fly from G to H.

In conclusion, Bea is away from her hive for 195 + 75 = 270 minutes.

Solution 2
Bea spends 60 minutes flying from H to F , 30 minutes at F , 45 minutes flying from F to
G, 60 minutes at G, and then flies from G to H.
Thus, her total time is 60 + 30 + 45 + 60 = 195 minutes plus the length of time that it
takes her to fly from G to H.
Since Bea flies at a constant speed, then the ratio of the two distances equals the ratio of
the corresponding times.
Therefore, we can use the Pythagorean Theorem on the times to obtain

Time G to H =
√

(Time H to F )2 + (Time F to G)2 =
√

602 + 452 =
√

5625 = 75 min

since the time is positive.
In conclusion, Bea is away from her hive for 195 + 75 = 270 minutes.

(b) Solution 1
Since ∠OPB = 90◦, then OP and PB are perpendicular, so the product of their slopes
is −1.

The slope of OP is
4− 0

p− 0
=

4

p
and the slope of PB is

4− 0

p− 10
=

4

p− 10
.

Therefore, we need

4

p
· 4

p− 10
= −1

16 = −p(p− 10)

p2 − 10p+ 16 = 0

(p− 2)(p− 8) = 0

and so p = 2 or p = 8. Since each these steps is reversible, then 4OPB is right-angled
precisely when p = 2 and p = 8.

Solution 2
Since 4OPB is right-angled at P , then OP 2 +PB2 = OB2 by the Pythagorean Theorem.
Note that OB = 10 since O has coordinates (0, 0) and B has coordinates (10, 0).
Also, OP 2 = (p−0)2 + (4−0)2 = p2 + 16 and PB2 = (10−p)2 + (4−0)2 = p2−20p+ 116.
Therefore,

(p2 + 16) + (p2 − 20p+ 116) = 102

2p2 − 20p+ 32 = 0

p2 − 10p+ 16 = 0
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and so (p − 2)(p − 8) = 0, or p = 2 or p = 8. Since each these steps is reversible, then
4OPB is right-angled precisely when p = 2 and p = 8.

4. (a) Suppose that Thurka bought x goats and y helicopters.
Then 19x+ 17y = 201.
Since x and y are non-negative integers, then 19x ≤ 201 so x ≤ 10.
If x = 10, then 17y = 201− 19x = 11, which does not have an integer solution because 11
is not divisible by 17.
If x = 9, then 17y = 201− 19x = 30, which does not have an integer solution.
If x = 8, then 17y = 201− 19x = 49, which does not have an integer solution.
If x = 7, then 17y = 201− 19x = 68, so y = 4.
Therefore, 19(7) + 17(4) = 201, and so Thurka buys 7 goats and 4 helicopters.
(We can check that x = 0, 1, 2, 3, 4, 5, 6 do not give values of y that work.)

(b) Solution 1
Manipulating algebraically,

(x+ 8)4 = (2x+ 16)2

(x+ 8)4 − 22(x+ 8)2 = 0

(x+ 8)2((x+ 8)2 − 22) = 0

(x+ 8)2((x+ 8) + 2)((x+ 8)− 2) = 0

(x+ 8)2(x+ 10)(x+ 6) = 0

Therefore, x = −8 or x = −10 or x = −6.

Solution 2
Manipulating algebraically,

(x+ 8)4 = (2x+ 16)2

(x+ 8)4 − 22(x+ 8)2 = 0

(x+ 8)2((x+ 8)2 − 22) = 0

(x+ 8)2(x2 + 16x+ 64− 4) = 0

(x+ 8)2(x2 + 16x+ 60) = 0

(x+ 8)2(x+ 10)(x+ 6) = 0

Therefore, x = −8 or x = −10 or x = −6.

Solution 3
Since (x+ 8)4 = (2x+ 16)2, then (x+ 8)2 = 2x+ 16 or (x+ 8)2 = −(2x+ 16).
From the first equation, x2 +16x+64 = 2x+16 or x2 +14x+48 = 0 or (x+6)(x+8) = 0.
From the second equation, x2 + 16x + 64 = −2x − 16 or x2 + 18x + 80 = 0 or
(x+ 10)(x+ 8) = 0.
Therefore, x = −8 or x = −10 or x = −6.
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5. (a) Solution 1
We use the fact that g(x) = g(f(f−1(x))).
Since f(x) = 2x+ 1, then to determine f−1(x) we solve x = 2y+ 1 for y to get 2y = x− 1
or y = 1

2
(x− 1). Thus, f−1(x) = 1

2
(x− 1).

Since g(f(x)) = 4x2 + 1, then

g(x) = g(f(f−1(x)))

= g(f(1
2
(x− 1)))

= 4(1
2
(x− 1))2 + 1

= 4 · 1
4
(x− 1)2 + 1

= (x− 1)2 + 1

= x2 − 2x+ 2

Solution 2
We use the expressions for f(x) and g(f(x)) to construct g(x).
Since f(x) is linear and g(f(x)) is quadratic, then it is likely that g(x) is also quadratic.
Since f(x) = 2x+ 1, then (f(x))2 = 4x2 + 4x+ 1.
Since g(f(x)) has no term involving x, then we subtract 2f(x) (to remove the 4x term)
to get

(f(x))2 − 2f(x) = (4x2 + 4x+ 1)− 2(2x+ 1) = 4x2 − 1

To get g(f(x)) from this, we add 2 to get 4x2 + 1.
Therefore, g(f(x)) = (f(x))2 − 2f(x) + 2, and so an expression for g(x) is x2 − 2x+ 2.

Solution 3
We use the expressions for f(x) and g(f(x)) to construct g(x).
Since f(x) is linear and g(f(x)) is quadratic, then it is likely that g(x) is also quadratic.
Suppose that g(x) = ax2 + bx+ c for some real numbers a, b, c.
Then

g(f(x)) = g(2x+ 1)

= a(2x+ 1)2 + b(2x+ 1) + c

= a(4x2 + 4x+ 1) + b(2x+ 1) + c

= 4ax2 + (4a+ 2b)x+ (a+ b+ c)

Since we are told that g(f(x)) = 4x2 + 1, then we can compare coefficients to deduce that
4a = 4 and 4a+ 2b = 0 and a+ b+ c = 1.
From the first equation, a = 1.
From the second equation, b = −2a = −2.
From the third equation, c = 1− a− b = 2.
Therefore, an expression for g(x) is x2 − 2x+ 2.

(b) Solution 1
Since the sum of the first two terms is 40 and the sum of the first three terms is 76, then
the third term is 76− 40 = 36.
Since the sum of the first three terms is 76 and the sum of the first four terms is 130, then
the fourth term is 130− 76 = 54.
Since the third term is 36 and the fourth term is 54, then the common ratio in the geo-
metric sequence is 54

36
= 3

2
.

Therefore, the fifth term is 54 · 3
2

= 81 and the sixth term is 81 · 3
2

= 243
2

.
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Also, the second term is 36÷ 3
2

= 36 · 2
3

= 24 and the first term is 24÷ 3
2

= 24 · 2
3

= 16.
Thus, the first six terms of the sequence are 16, 24, 36, 54, 81, 243

2
.

Since the first term equals 24 and the common ratio is 3
2
, then the nth term in the sequence

is 24

(
3

2

)n−1

=
3n−1

2n−5
.

When n ≥ 6, this is a fraction whose numerator is odd and whose denominator is even,
and so, when n ≥ 6, the nth term is not an integer. (An odd integer is never divisible by
an even integer.)
Therefore, there will be 5 integers in the sequence.

Solution 2
Suppose that a is the first term and r is the common ratio between consecutive terms (so
that ar is the second term, ar2 is the third term, and so on).
From the given information, a+ar = 40 and a+ar+ar2 = 76 and a+ar+ar2+ar3 = 130.
Subtracting the first equation from the second, we obtain ar2 = 36.
Subtracting the second equation from the third, we obtain ar3 = 54.

Since ar3 = 54 and ar2 = 36, then r =
ar3

ar2
=

54

36
=

3

2
.

Since ar2 = 36 and r = 3
2
, then a(3

2
)2 = 36 or 9

4
a = 36 or a = 4

9
· 36 = 16.

Since a = 16 and r = 3
2
, then the first six terms of the sequence are 16, 24, 36, 54, 81, 243

2
.

Since the first term equals 24 and the common ratio is 3
2
, then the nth term in the sequence

is 24

(
3

2

)n−1

=
3n−1

2n−5
.

When n ≥ 6, this is a fraction whose numerator is odd and whose denominator is even,
and so, when n ≥ 6, the nth term is not an integer. (An odd integer is never divisible by
an even integer.)
Therefore, there will be 5 integers in the sequence.

6. (a) In a 30◦-60◦-90◦ triangle, the ratio of the side opposite the 90◦ to the side opposite the
60◦ angle is 2 :

√
3.

Note that each of4ABC, 4ACD, 4ADE, 4AEF , 4AFG, and4AGH is a 30◦-60◦-90◦

triangle.

Therefore,
AH

AG
=
AG

AF
=
AF

AE
=
AE

AD
=
AD

AC
=
AC

AB
=

2√
3

.

Thus, AH = 2√
3
AG =

(
2√
3

)2

AF =
(

2√
3

)3

AE =
(

2√
3

)4

AD =
(

2√
3

)5

AC =
(

2√
3

)6

AB.

(In other words, to get from AB = 1 to the length of AH, we multiply by the “scaling
factor” 2√

3
six times.)

Therefore, AH =
(

2√
3

)6

= 64
27

.

(b) Solution 1
Since 4AFD is right-angled at F , then by the Pythagorean Theorem,

AD =
√
AF 2 + FD2 =

√
42 + 22 =

√
20 = 2

√
5

since AD > 0.
Let ∠FAD = β.
Since ABCD is a rectangle, then ∠BAF = 90◦ − β.
Since 4AFD is right-angled at F , then ∠ADF = 90◦ − β.
Since ABCD is a rectangle, then ∠BDC = 90◦ − (90◦ − β) = β.
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D

A B

CE

F

90  

90  

Therefore, 4BFA, 4AFD, and 4DFE are all similar as each is right-angled and has
either an angle of β or an angle of 90◦ − β (and hence both of these angles).

Therefore,
AB

AF
=
DA

DF
and so AB = 4(2

√
5)

2
= 4
√

5.

Also,
FE

FD
=
FD

FA
and so FE = 2(2)

4
= 1.

Since ABCD is a rectangle, then BC = AD = 2
√

5, and DC = AB = 4
√

5.
Finally, the area of quadrilateral BCEF equals the area of4DCB minus the area4DFE.
Thus, the required area is

1
2
(DC)(CB)− 1

2
(DF )(FE) = 1

2
(4
√

5)(2
√

5)− 1
2
(2)(1) = 20− 1 = 19

Solution 2
Since 4AFD is right-angled at F , then by the Pythagorean Theorem,

AD =
√
AF 2 + FD2 =

√
42 + 22 =

√
20 = 2

√
5

since AD > 0.
Let ∠FAD = β.
Since ABCD is a rectangle, then ∠BAF = 90◦ − β. Since 4BAF is right-angled at F ,
then ∠ABF = β.
Since 4AFD is right-angled at F , then ∠ADF = 90◦ − β.
Since ABCD is a rectangle, then ∠BDC = 90◦ − (90◦ − β) = β.

D

A B

CE

F

90  

90  

Looking at 4AFD, we see that sin β =
FD

AD
=

2

2
√

5
=

1√
5

, cos β =
AF

AD
=

4

2
√

5
=

2√
5

,

and tan β =
FD

AF
=

2

4
=

1

2
.

Since AF = 4 and ∠ABF = β, then AB =
AF

sin β
=

4
1√
5

= 4
√

5.

Since FD = 2 and ∠FDE = β, then FE = FD tan β = 2 · 1
2

= 1.

Since ABCD is a rectangle, then BC = AD = 2
√

5, and DC = AB = 4
√

5.
Finally, the area of quadrilateral EFBC equals the area of4DCB minus the area4DFE.
Thus, the required area is

1
2
(DC)(CB)− 1

2
(DF )(FE) = 1

2
(4
√

5)(2
√

5)− 1
2
(2)(1) = 20− 1 = 19
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7. (a) Using the facts that 9 = 32 and 27 = 33, and the laws for manipulating exponents, we
have

3x−19
3

2x2 = 27

3x−1(32)
3

2x2 = 33

3x−13
3

x2 = 33

3x−1+ 3
x2 = 33

When two powers of 3 are equal, their exponents must be equal so

x− 1 +
3

x2
= 3

x3 − x2 + 3 = 3x2 (multiplying by x2)

x3 − 4x2 + 3 = 0

Since x = 1 satisfies the equation, then x−1 is a factor of the left side. Using long division
or synthetic division, we can factor this out to get (x− 1)(x2 − 3x− 3) = 0.
Using the quadratic formula, the quadratic equation x2 − 3x− 3 = 0 has roots

x =
3±

√
(−3)2 − 4(1)(−3)

2
=

3±
√

21

2

Therefore, the solutions to the original equation are x = 1 and x =
3±
√

21

2
.

(b) To determine the points of intersection, we equate y values of the two curves and obtain
log10(x

4) = (log10 x)3.
Since log10(a

b) = b log10 a, the equation becomes 4 log10 x = (log10 x)3.
We set u = log10 x and so the equation becomes 4u = u3, or u3 − 4u = 0.
We can factor the left side as u3 − 4u = u(u2 − 4) = u(u+ 2)(u− 2).
Therefore, u(u+ 2)(u− 2) = 0, and so u = 0 or u = −2 or u = 2.
Therefore, log10 x = 0 or log10 x = −2 or log10 x = 2.
Therefore, x = 1 or x = 1

100
or x = 100.

Finally, we must calculate the y-coordinates of the points of intersection. Since one of the
original curves is y = (log10 x)3, we can calculate the corresponding values of y by using
the fact that y = u3.
The corresponding values of y are y = 03 = 0 and y = (−2)3 = −8 and y = 23 = 8.
Therefore, the points of intersection are (1, 0), ( 1

100
,−8) and (100, 8).

8. (a) If Oi-Lam tosses 3 heads, then George has no coins to toss, so cannot toss exactly 1 head.
If Oi-Lam tosses 2, 1 or 0 heads, then George has at least one coin to toss, so can toss
exactly 1 head.
Therefore, the following possibilities exist:

∗ Oi-Lam tosses 2 heads out of 3 coins and George tosses 1 head out of 1 coin

∗ Oi-Lam tosses 1 head out of 3 coins and George tosses 1 head out of 2 coins

∗ Oi-Lam tosses 0 heads out of 3 coins and George tosses 1 head out of 3 coins

We calculate the various probabilities.
If 3 coins are tossed, there are 8 equally likely possibilities: HHH, HHT, HTH, THH, TTH,

THT, HTT, TTT. Each of these possibilities has probability
(

1
2

)3
= 1

8
. Therefore,



2010 Euclid Contest Solutions Page 9

∗ the probability of tossing 0 heads out of 3 coins is 1
8

∗ the probability of tossing 1 head out of 3 coins is 3
8

∗ the probability of tossing 2 heads out of 3 coins is 3
8

∗ the probability of tossing 3 heads out of 3 coins is 1
8

If 2 coins are tossed, there are 4 equally likely possibilities: HH, HT, TH, TT. Each of

these possibilities has probability
(

1
2

)2
= 1

4
. Therefore, the probability of tossing 1 head

out of 2 coins is 2
4

= 1
2
.

If 1 coin is tossed, the probability of tossing 1 head is 1
2
.

To summarize, the possibilities are

∗ Oi-Lam tosses 2 heads out of 3 coins (with probability 3
8
) and George tosses 1 head

out of 1 coin (with probability 1
2
)

∗ Oi-Lam tosses 1 head out of 3 coins (with probability 3
8
) and George tosses 1 head

out of 2 coins (with probability 1
2
)

∗ Oi-Lam tosses 0 heads out of 3 coins (with probability 1
8
) and George tosses 1 head

out of 3 coins (with probability 3
8
)

Therefore, the overall probability is 3
8
· 1

2
+ 3

8
· 1

2
+ 1

8
· 3

8
= 27

64
.

(b) Suppose ∠PAR = x◦ and ∠QDR = y◦.

A D

R

P QB C
x

y

Since PR and PA are radii of the larger circle, then 4PAR is isosceles.
Thus, ∠PRA = ∠PAR = x◦.
Since QD and QR are radii of the smaller circle, then 4QRD is isosceles.
Thus, ∠QRD = ∠QDR = y◦.
In4ARD, the sum of the angles is 180◦, so x◦+(x◦+40◦+y◦)+y◦ = 180◦ or 2x+2y = 140
or x+ y = 70.
Therefore, ∠CPD = x◦ + 40◦ + y◦ = (x+ y + 40)◦ = 110◦.

9. (a) (i) Solution 1
LS = cot θ − cot 2θ

=
cos θ

sin θ
− cos 2θ

sin 2θ

=
sin 2θ cos θ − cos 2θ sin θ

sin θ sin 2θ

=
sin(2θ − θ)
sin θ sin 2θ

=
sin θ

sin θ sin 2θ

=
1

sin 2θ
= RS

as required.
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Solution 2

LS = cot θ − cot 2θ

=
cos θ

sin θ
− cos 2θ

sin 2θ

=
cos θ

sin θ
− cos 2θ

2 sin θ cos θ

=
2 cos2 θ − cos 2θ

2 sin θ cos θ

=
2 cos2 θ − (2 cos2 θ − 1)

sin 2θ

=
1

sin 2θ
= RS

as required.

(ii) We use (i) to note that
1

sin 8◦
= cot 4◦ − cot 8◦ and

1

sin 16◦
= cot 8◦ − cot 16◦ and so

on. Thus,

S =
1

sin 8◦
+

1

sin 16◦
+

1

sin 32◦
+ · · ·+ 1

sin 4096◦
+

1

sin 8192◦

= (cot 4◦ − cot 8◦) + (cot 8◦ − cot 16◦) + (cot 16◦ − cot 32◦) +

· · ·+ (cot 2048◦ − cot 4096◦) + (cot 4096◦ − cot 8192◦)

= cot 4◦ − cot 8192◦

since the sum “telescopes”.
Since the cotangent function has a period of 180◦, and 8100◦ is a multiple of 180◦,
then cot 8192◦ = cot 92◦.
Therefore,

S = cot 4◦ − cot 92◦

=
cos 4◦

sin 4◦
− cos 92◦

sin 92◦

=
cos 4◦

sin 4◦
− − sin 2◦

cos 2◦

=
cos 4◦

2 sin 2◦ cos 2◦
+

sin 2◦

cos 2◦

=
cos 4◦ + 2 sin2 2◦

2 sin 2◦ cos 2◦

=
(1− 2 sin2 2◦) + 2 sin2 2◦

sin 4◦

=
1

sin 4◦

Therefore, α = 4◦.
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(b) Solution 1
We use the notation A = ∠BAC, B = ∠ABC and C = ∠ACB.
We need to show that A < 1

2
(B + C). Since the sum of the angles in 4ABC is 180◦,

then B + C = 180◦ − A, and so this inequality is equivalent to A < 1
2
(180◦ − A) which is

equivalent to 3
2
A < 90◦ or A < 60◦.

So we need to show that A < 60◦.
We know that a < 1

2
(b + c). Thus, 2a < b + c and so 4a2 < b2 + c2 + 2bc because all

quantities are positive.
Using the cosine law in 4ABC, we obtain a2 = b2 + c2 − 2bc cosA.
Therefore,

4a2 < b2 + c2 + 2bc

4(b2 + c2 − 2bc cosA) < b2 + c2 + 2bc

4b2 + 4c2 − 8bc cosA < b2 + c2 + 2bc

4b2 + 4c2 − 8bc cosA < b2 + c2 + 2bc+ 3(b− c)2 (since (b− c)2 ≥ 0)

4b2 + 4c2 − 8bc cosA < b2 + c2 + 2bc+ 3b2 − 6bc+ 3c2

4b2 + 4c2 − 8bc cosA < 4b2 + 4c2 − 4bc

−8bc cosA < −4bc

cosA > 1
2

(since 8bc > 0)

Since 2a < b + c, then a cannot be the longest side of 4ABC (that is, we cannot have
a ≥ b and a ≥ c), so A must be an acute angle.
Therefore, cosA > 1

2
implies A < 60◦, as required.

Solution 2
We use the notation A = ∠BAC, B = ∠ABC and C = ∠ACB.
We need to show that A < 1

2
(B + C). Since the sum of the angles in 4ABC is 180◦,

then B + C = 180◦ − A, and so this inequality is equivalent to A < 1
2
(180◦ − A) which is

equivalent to 3
2
A < 90◦ or A < 60◦.

So we need to show that A < 60◦.
We know that a < 1

2
(b+ c) which implies 2a < b+ c.

Using the sine law in 4ABC, we obtain
a

sinA
=

b

sinB
=

c

sinC
, which gives b =

a sinB

sinA

and c =
a sinC

sinA
.

Therefore, we obtain equivalent inequalities

2a < b+ c

2a <
a sinB

sinA
+
a sinC

sinA
2a sinA < a sinB + a sinC (since sinA > 0 for 0◦ < A < 180◦)

2 sinA < sinB + sinC

since a > 0. Next, we use the trigonometric formula sinB+sinC = 2 sin

(
B + C

2

)
cos

(
B − C

2

)
.

Since cos θ ≤ 1 for any θ, then sinB + sinC ≤ 2 sin

(
B + C

2

)
· 1 = 2 sin

(
B + C

2

)
.



2010 Euclid Contest Solutions Page 12

Therefore,

2 sinA < sinB + sinC ≤ 2 sin

(
B + C

2

)
2 sinA < 2 sin

(
B + C

2

)
2 sinA < 2 sin

(
180◦ − A

2

)
4 sin(1

2
A) cos(1

2
A) < 2 sin(90◦ − 1

2
A)

2 sin(1
2
A) cos(1

2
A) < cos(1

2
A)

Since 0◦ < A < 180◦, then cos(1
2
A) > 0, so sin(1

2
A) < 1

2
.

Since 2a < b + c, then a cannot be the longest side of 4ABC, so A must be an acute
angle.
Therefore, 1

2
A < 30◦ or A < 60◦, as required.

10. Denote the side lengths of a triangle by a, b and c, with 0 < a ≤ b ≤ c.
In order for these lengths to form a triangle, we need c < a+ b and b < a+ c and a < b+ c.
Since 0 < a ≤ b ≤ c, then b < a + c and a < b + c follow automatically, so only c < a + b ever
needs to be checked.
Instead of directly considering triangles and sets of triangle, we can consider triples (a, b, c) and
sets of triples (a, b, c) with the appropriate conditions.
For each positive integer k ≥ 3, we use the notation Sk to denote the set of triples of positive
integers (a, b, c) with 0 < a ≤ b ≤ c and c < a+ b and a+ b+ c = k.
In this case, c < a+ b and a+ b+ c = k, so c+ c < a+ b+ c = k, so 2c < k or c < 1

2
k.

Also, if 0 < a ≤ b ≤ c and a+ b+ c = k, then k = a+ b+ c ≤ c+ c+ c, so 3c ≥ k or c ≥ 1
3
k.

(a) Consider T (10), which is the number of elements in S10.
We want to find all possible triples (a, b, c) of integers with 0 < a ≤ b ≤ c and c < a + b
and a+ b+ c = 10.
We need c < 10

2
= 5 and c ≥ 10

3
. Thus, c = 4.

Therefore, we need 0 < a ≤ b ≤ 4 and a+ b = 6.
There are two possibilities: (a, b, c) = (2, 4, 4) or (a, b, c) = (3, 3, 4).
Therefore, T (10) = 2.

Consider T (11). We want to find all possible triples (a, b, c) of integers with 0 < a ≤ b ≤ c
and c < a+ b and a+ b+ c = 11.
We need c < 11

2
and c ≥ 11

3
. Thus, c = 4 or c = 5.

If c = 4, we need 0 < a ≤ b ≤ 4 and a+ b = 7.
There is only one possibility: (a, b, c) = (3, 4, 4).
If c = 5, we need 0 < a ≤ b ≤ 5 and a+ b = 6.
There are three possibilities: (a, b, c) = (1, 5, 5) or (a, b, c) = (2, 4, 5) or (a, b, c) = (3, 3, 5).
Therefore, T (11) = 4.

Consider T (12). We want to find all possible triples (a, b, c) of integers with 0 < a ≤ b ≤ c
and c < a+ b and a+ b+ c = 12.
We need c < 12

2
and c ≥ 12

3
. Thus, c = 4 or c = 5.

If c = 4, we need 0 < a ≤ b ≤ 4 and a+ b = 8.
There is only one possibility: (a, b, c) = (4, 4, 4).



2010 Euclid Contest Solutions Page 13

If c = 5, we need 0 < a ≤ b ≤ 5 and a+ b = 7.
There are two possibilities: (a, b, c) = (2, 5, 5) or (a, b, c) = (3, 4, 5).
Therefore, T (12) = 3.

(b) We show that T (2m) = T (2m − 3) by creating a one-to-one correspondence between the
triples in S2m and the triples S2m−3.
Note that S2m is the set of triples (a, b, c) of positive integers with 0 < a ≤ b ≤ c, with
c < a+ b, and with a+ b+ c = 2m.
Also, S2m−3 is the set of triples (A,B,C) of positive integers with 0 < A ≤ B ≤ C, with
C < A+B, and with A+B + C = 2m− 3.

Consider a triple (a, b, c) in S2m and a corresponding triple (a− 1, b− 1, c− 1).
We show that (a− 1, b− 1, c− 1) is in S2m−3:

∗ Since (a, b, c) is in S2m, then c < 1
2
(2m) = m. This means that b ≤ c ≤ m − 1, so

a = 2m− b− c ≥ 2. Therefore, a− 1, b− 1 and c− 1 are positive integers since a, b
and c are positive integers with 2 ≤ a ≤ b ≤ c.

∗ Since 2 ≤ a ≤ b ≤ c, then 1 ≤ a− 1 ≤ b− 1 ≤ c− 1, so 0 < a− 1 ≤ b− 1 ≤ c− 1.

∗ Since a+ b+ c = 2m, then c = 2m− (a+ b) so a+ b and c have the same parity.
Since c < a + b, then c ≤ a + b − 2. (In other words, it cannot be the case that
c = a+ b−1.) Therefore, c−1 ≤ (a−1)+(b−1)−1; that is, c−1 < (a−1)+(b−1).

∗ Since a+ b+ c = 2m, then (a− 1) + (b− 1) + (c− 1) = 2m− 3.

Therefore, (a− 1, b− 1, c− 1) is in S2m−3, since it satisfies all of the conditions of S2m−3.
Note as well that two different triples in S2m correspond to two different triples in S2m−3.
Thus, every triple in S2m corresponds to a different triple in S2m−3.
Thus, T (2m) ≤ T (2m− 3).

Consider a triple (A,B,C) in S2m−3 and a corresponding triple (A+ 1, B + 1, C + 1).
We show that (A+ 1, B + 1, C + 1) is in S2m:

∗ Since (A,B,C) is in S2m−3, then A, B and C are positive integers, so A + 1, B + 1
and C + 1 are positive integers.

∗ Since 0 < A ≤ B ≤ C, then 1 < A+1 ≤ B+1 ≤ C+1, so 0 < A+1 ≤ B+1 ≤ C+1.

∗ Since C < A+B, then C + 1 < (A+ 1) + (B + 1)− 1 so C + 1 < (A+ 1) + (B + 1).

∗ Since A+B + C = 2m− 3, then (A+ 1) + (B + 1) + (C + 1) = 2m.

Therefore, (A+ 1, B + 1, C + 1) is in S2m.
Note again that two different triples in S2m−3 correspond to two different triples in S2m.
Thus, every triple in S2m−3 corresponds to a different triple in S2m.
Therefore, T (2m− 3) ≤ T (2m).

Since T (2m) ≤ T (2m− 3) and T (2m− 3) ≤ T (2m), then T (2m) = T (2m− 3).

(c) We will use two important facts:

(F1) T (2m) = T (2m− 3) for every positive integer m ≥ 3, and

(F2) T (k) ≤ T (k + 2) for every positive integer k ≥ 3

We proved (F1) in (b).
Next, we prove (F2):

Consider a triple (a, b, c) in Sk and a corresponding triple (a, b + 1, c + 1). We
show that the triple (a, b+ 1, c+ 1) is in Sk+2:

∗ Since a, b and c are positive integers, then a, b + 1 and c + 1 are positive
integers.
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∗ Since 0 < a ≤ b ≤ c, then 0 < a ≤ b+ 1 ≤ c+ 1.

∗ Since c < a+ b, then c+ 1 < a+ (b+ 1).

∗ Since a+ b+ c = k, then a+ (b+ 1) + (c+ 1) = k + 2.

Therefore, (a, b + 1, c + 1) is in Sk+2. Note that, using this correspondence,
different triples in Sk correspond different triples in Sk+2. Thus, every triple in
Sk corresponds to a different triple in Sk+2. This proves that T (k) ≤ T (k + 2).

Suppose that n = N is the smallest positive integer for which T (n) > 2010.
Then N must be odd:

If N was even, then by (F1), T (N − 3) = T (N) > 2010 and so n = N − 3 would
be an integer smaller than N with T (n) > 2010. This contradicts the fact that
n = N is the smallest such integer.

Therefore, we want to find the smallest odd positive integer N for which T (N) > 2010.
Next, we note that if we can find an odd positive integer n such that T (n) > 2010 ≥
T (n− 2), then we will have found the desired value of n:

This is because n and n− 2 are both odd, and by property (F2), any smaller odd
positive integer k will give T (k) ≤ T (n − 2) ≤ 2010 and any larger odd positive
integer m will give T (m) ≥ T (n) > 2010.

We show that N = 309 is the desired value of N by showing that T (309) > 2010 and
T (307) ≤ 2010.

Calculation of T (309)

We know that 309
3
≤ c < 309

2
, so 103 ≤ c ≤ 154.

For each admissible value of c, we need to count the number of pairs of positive integers
(a, b) with a ≤ b ≤ c and a+ b = 309− c.
For example, if c = 154, then we need a ≤ b ≤ 154 and a+ b = 155.
This gives pairs (1, 154), (2, 153), . . . , (76, 79), (77, 78), of which there are 77.
Also, if c = 153, then we need a ≤ b ≤ 153 and a+ b = 156.
This gives pairs (3, 153), . . . , (77, 79), (78, 78), of which there are 76.
In general, if c is even, then the minimum possible value of a occurs when b is as large as
possible – that is, when b = c, so a ≥ 309− 2c.
Also, the largest possible value of a occurs when a and b are as close to equal as possible.
Since c is even, then 309− c is odd, so a and b cannot be equal, but they can differ by 1.
In this case, a = 154− 1

2
c and b = 155− 1

2
c.

Therefore, if c is even, there are (154− 1
2
c)− (309− 2c) + 1 = 3

2
c− 154 possible pairs (a, b)

and so 3
2
c− 154 possible triples.

In general, if c is odd, then the minimum possible value of a occurs when b is as large as
possible – that is, when b = c, so a ≥ 309− 2c.
Also, the largest possible value of a occurs when a and b are as close to equal as possible.
Since c is odd, then 309− c is even, so a and b can be equal. In this case, a = 1

2
(309− c).

Therefore, if c is odd, there are 1
2
(309− c)− (309− 2c) + 1 = 3

2
c− 307

2
possible pairs (a, b)

and so 3
2
c− 307

2
possible triples.

The possible even values of c are 104, 106, . . . , 152, 154 (there are 26 such values) and the
possible odd values of c are 103, 105, . . . , 151, 153 (there are 26 such values).
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Therefore,

T (309) =
(

3
2
(104)− 154

)
+
(

3
2
(106)− 154

)
+ · · ·+

(
3
2
(154)− 154

)
+(

3
2
(103)− 307

2

)
+
(

3
2
(105)− 307

2

)
+ · · ·+

(
3
2
(153)− 307

2

)
= 3

2
(104 + 106 + · · ·+ 154)− 26 · 154 + 3

2
(103 + 105 + · · ·+ 153)− 26 · 307

2

= 3
2
(103 + 104 + 105 + 106 + · · ·+ 153 + 154)− 26 · 154− 26 · 307

2

= 3
2
· 1

2
(103 + 154)(52)− 26 · 154− 26 · 307

2

= 3
2
(26)(257)− 26 · 154− 26 · 307

2

= 2028

Therefore, T (309) > 2010, as required.

Calculation of T (307)

We know that 307
3
≤ c < 307

2
, so 103 ≤ c ≤ 153.

For each admissible value of c, we need to count the number of pairs of positive integers
(a, b) with a ≤ b ≤ c and a+ b = 307− c.
This can be done in a similar way to the calculation of T (309) above.
If n is even, there are 3

2
c− 153 possible triples.

If n is odd, there are 3
2
c− 305

2
possible triples.

The possible even values of c are 104, 106, . . . , 150, 152 (there are 25 such values) and the
possible odd values of c are 103, 105, . . . , 151, 153 (there are 26 such values).
Therefore,

T (307) =
(

3
2
(104)− 153

)
+
(

3
2
(106)− 153

)
+ · · ·+

(
3
2
(152)− 153

)
+(

3
2
(103)− 305

2

)
+
(

3
2
(105)− 305

2

)
+ · · ·+

(
3
2
(153)− 305

2

)
= 3

2
(104 + 106 + · · ·+ 152)− 25 · 153 + 3

2
(103 + 105 + · · ·+ 153)− 26 · 305

2

= 3
2
(103 + 104 + 105 + 106 + · · ·+ 152 + 153)− 25 · 153− 26 · 305

2

= 3
2
· 1

2
(103 + 153)(51)− 25 · 153− 26 · 305

2

= 3
2
(51)(128)− 25 · 153− 26 · 305

2

= 2002

Therefore, T (307) < 2010, as required.

Therefore, the smallest positive integer n such that T (n) > 2010 is n = 309.

As a final note, we discuss briefly how one could guess that the answer was near N = 309.

Consider the values of T (n) for small odd positive integers n.
In (a), by considering the possible values of c from smallest (roughly 1

3
n) to largest

(roughly 1
2
n), we saw that T (11) = 1 + 3 = 4.

If we continue to calculate T (n) for a few more small odd values of n we will see
that:

T (13) = 2 + 3 = 5

T (15) = 1 + 2 + 4 = 7

T (17) = 1 + 3 + 4 = 8

T (19) = 2 + 3 + 5 = 10

T (21) = 1 + 2 + 4 + 5 = 12

T (23) = 1 + 3 + 4 + 6 = 14
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The pattern that seems to emerge is that for n odd, T (n) is roughly equal to the
sum of the integers from 1 to 1

4
n, with one out of every three integers removed.

Thus, T (n) is roughly equal to 2
3

of the sum of the integers from 1 to 1
4
n.

Therefore, T (n) ≈ 2
3
· 1

2
(1

4
n)(1

4
n+ 1) ≈ 2

3
· 1

2
(1

4
n)2 ≈ 1

48
n2.

It makes sense to look for an odd positive integer n with T (n) ≈ 2010.
Thus, we are looking for a value of n that roughly satisfies 1

48
n2 ≈ 2010 or

n2 ≈ 96480 or n ≈ 310.
Since n is odd, then it makes sense to consider n = 309, as in the solution above.


